Confusion Surrounds AI System Definition Guidelines

AI System Definition Guidelines: A Critical Review

The recently published guidelines by the European Commission regarding the definition of an artificial intelligence (AI) system have been met with criticism for their lack of clarity. These guidelines were intended to assist developers, users, and enforcers in understanding the definition, yet they appear to add confusion rather than resolve it.

Understanding the AI Act

The EU’s AI regulation, known as the AI Act, defines an AI system as:

“a machine-based system that is designed to operate with varying levels of autonomy and that may exhibit adaptiveness after deployment, and that, for explicit or implicit objectives, infers, from the input it receives, how to generate outputs such as predictions, content, recommendations, or decisions that can influence physical or virtual environments.”

This definition is crucial as it sets the stage for what is considered an AI system within the scope of regulation.

Key Issues Identified

Upon reviewing the guidelines, three significant issues emerge regarding their interpretation of the AI system definition:

1. Inclusion of Logistic Regression

The guidelines state that “Systems for improving mathematical optimization” are out of scope. However, it is mentioned that methods like linear or logistic regression fall under this category. This is problematic because, in different contexts, these methods can be included within the AI Act’s scope. The distinction made in Paragraph 45 between “optimising the functioning of the systems” and “adjustments of their decision-making models” indicates that the latter remains governed by the AI Act. Thus, applications utilizing logistic regression for crucial decision-making processes would indeed fall within the law’s purview.

2. Contradiction with AI Act Recitals

The guidelines attempt to differentiate AI systems from traditional software systems, yet they contradict the AI Act. Recital 12 of the AI Act emphasizes that a key characteristic of AI systems is their capability to infer, which transcends basic data processing. However, the guidelines assert that certain optimization methods, despite having the capacity to infer, do not surpass “basic data processing”.

3. Questionable Reasoning

One justification provided in the guidelines states that a system’s long-term usage could indicate it does not transcend basic data processing. This reasoning seems flawed, as the duration of a system’s use should not determine its classification as an AI system. Further, the guidelines suggest that “All machine-based systems whose performance can be achieved via a basic statistical learning rule” fall outside the AI system definition due to their performance. Such explanations only contribute to the prevailing confusion surrounding the guidelines.

Conclusion

In summary, the European Commission’s guidelines on AI system definitions are criticized for failing to provide the clarity they aimed for. Instead, they introduce ambiguity and confusion about what constitutes an AI system under the AI Act. Fortunately, these guidelines are not legally binding, and it is hoped that regulators will apply sound reasoning in their interpretation of AI systems moving forward.

More Insights

Revolutionizing Drone Regulations: The EU AI Act Explained

The EU AI Act represents a significant regulatory framework that aims to address the challenges posed by artificial intelligence technologies in various sectors, including the burgeoning field of...

Revolutionizing Drone Regulations: The EU AI Act Explained

The EU AI Act represents a significant regulatory framework that aims to address the challenges posed by artificial intelligence technologies in various sectors, including the burgeoning field of...

Embracing Responsible AI to Mitigate Legal Risks

Businesses must prioritize responsible AI as a frontline defense against legal, financial, and reputational risks, particularly in understanding data lineage. Ignoring these responsibilities could...

AI Governance: Addressing the Shadow IT Challenge

AI tools are rapidly transforming workplace operations, but much of their adoption is happening without proper oversight, leading to the rise of shadow AI as a security concern. Organizations need to...

EU Delays AI Act Implementation to 2027 Amid Industry Pressure

The EU plans to delay the enforcement of high-risk duties in the AI Act until late 2027, allowing companies more time to comply with the regulations. However, this move has drawn criticism from rights...

White House Challenges GAIN AI Act Amid Nvidia Export Controversy

The White House is pushing back against the bipartisan GAIN AI Act, which aims to prioritize U.S. companies in acquiring advanced AI chips. This resistance reflects a strategic decision to maintain...

Experts Warn of EU AI Act’s Impact on Medtech Innovation

Experts at the 2025 European Digital Technology and Software conference expressed concerns that the EU AI Act could hinder the launch of new medtech products in the European market. They emphasized...

Ethical AI: Transforming Compliance into Innovation

Enterprises are racing to innovate with artificial intelligence, often without the proper compliance measures in place. By embedding privacy and ethics into the development lifecycle, organizations...

AI Hiring Compliance Risks Uncovered

Artificial intelligence is reshaping recruitment, with the percentage of HR leaders using generative AI increasing from 19% to 61% between 2023 and 2025. However, this efficiency comes with legal...