Securing AI Copilots: Mitigating Risks and Enhancing Compliance

The Hidden Dangers of AI Copilots and How to Strengthen Security and Compliance

AI models, particularly Microsoft’s Copilot, present a new frontier in both productivity and risk. As organizations increasingly integrate these systems into their workflows, they must remain vigilant about the security, privacy, and compliance risks that accompany their use. Without adequate safeguards, organizations could find themselves making headlines for data breaches or violations of privacy regulations.

The potential dangers of AI copilots are not mere hypotheticals; there are documented incidents that underscore these risks. For example, Microsoft’s Copilot AI recently exposed the contents of over 20,000 private GitHub repositories belonging to high-profile companies, including Google, Intel, and even Microsoft itself. Furthermore, in a separate incident in 2023, Microsoft AI inadvertently leaked 38TB of confidential data due to misconfigurations related to access controls on GitHub.

These incidents serve as stark warnings about the consequences of overexposed data and inadequate governance in the realm of AI.

Open System vs. Closed-Loop AI Model

To effectively secure AI models, it is essential to differentiate between open systems and closed-loop AI models. A closed-loop model enables enterprises to train AI systems exclusively on their data within a controlled environment, thereby minimizing the risk of sensitive data being shared across customers or geolocations.

In contrast, AI models like Copilot and ChatGPT operate as open systems, continuously learning and updating their responses based on user prompts and data from the internet. While there are numerous advantages to open AI models, they also introduce significant risks that organizations must address. By adopting a multi-layered approach to security and governance, organizations can mitigate these risks.

A Multi-Layered Approach to Generative AI Security

Organizations cannot protect what they do not understand. The first step toward preparing for AI integration is the ability to classify and tag all data within their systems, identifying which data is sensitive, confidential, or appropriate for AI training. Without effective classification and tagging, AI systems like Microsoft Copilot may inadvertently process and reveal data that should remain confidential.

To enhance governance, organizations should implement the following measures:

  • Conduct comprehensive data risk assessments across platforms such as OneDrive, SharePoint, and Teams.
  • Label and tag sensitive, critical, or regulated data to identify what is safe for AI training.
  • Establish automated policies to flag or remediate policy violations before they escalate.
  • Remove duplicate, redundant, and obsolete data from data stores used for AI training.
  • Restrict AI access permissions to only those data deemed safe for AI use.

Once organizations have established visibility over their data, the next vital step is to control access. As highlighted by the GitHub data exposure incident, even tagged and classified data can pose risks if access controls are not appropriately managed. Security leaders must track which datasets are used to train AI models and audit AI-generated outputs for potential compliance violations.

Failure to implement robust data management measures may lead organizations to violate regulations such as the GDPR and CCPA. Such violations can result in hefty fines and damage to the organization’s brand and consumer trust. Therefore, it is imperative that privacy considerations are integral to the foundation of AI security and governance strategies.

AI Data Security and Governance in the AI Era

The advent of AI-driven digital transformation necessitates a paradigm shift in how organizations approach security and compliance. Those who neglect to enforce strong governance measures risk exposing their most valuable asset: data. Now is the time for IT leaders to implement strict AI security policies and ensure that generative AI technologies are leveraged safely and responsibly.

More Insights

US Rejects UN’s Call for Global AI Governance Framework

U.S. officials rejected the establishment of a global AI governance framework at the United Nations General Assembly, despite broad support from many nations, including China. Michael Kratsios of the...

Agentic AI: Managing the Risks of Autonomous Systems

As companies increasingly adopt agentic AI systems for autonomous decision-making, they face the emerging challenge of agentic AI sprawl, which can lead to security vulnerabilities and operational...

AI as a New Opinion Gatekeeper: Addressing Hidden Biases

As large language models (LLMs) become increasingly integrated into sectors like healthcare and finance, a new study highlights the potential for subtle biases in AI systems to distort public...

AI Accountability: A New Era of Regulation and Compliance

The burgeoning world of Artificial Intelligence (AI) is at a critical juncture as regulatory actions signal a new era of accountability and ethical deployment. Recent events highlight the shift...

Choosing Effective AI Governance Tools for Safer Adoption

As generative AI continues to evolve, so do the associated risks, making AI governance tools essential for managing these challenges. This initiative, in collaboration with Tokio Marine Group, aims to...

UN Initiatives for Trustworthy AI Governance

The United Nations is working to influence global policy on artificial intelligence by establishing an expert panel to develop standards for "safe, secure and trustworthy" AI. This initiative aims to...

Data-Driven Governance: Shaping AI Regulation in Singapore

The conversation between Thomas Roehm from SAS and Frankie Phua from United Overseas Bank at the SAS Innovate On Tour in Singapore explores how data-driven regulation can effectively govern rapidly...

Preparing SMEs for EU AI Compliance Challenges

Small and medium-sized enterprises (SMEs) must navigate the complexities of the EU AI Act, which categorizes many AI applications as "high-risk" and imposes strict compliance requirements. To adapt...

Draft Guidance on Reporting Serious Incidents Under the EU AI Act

On September 26, 2025, the European Commission published draft guidance on serious incident reporting requirements for high-risk AI systems under the EU AI Act. Organizations developing or deploying...