Regulating the Future of AI: Nine Key Approaches

9 Approaches for Artificial Intelligence Government Regulations

Since 2016, over thirty countries have passed laws that explicitly mention Artificial Intelligence. As of 2025, discussions regarding AI legislation in various legislative bodies have intensified globally. Various regulatory approaches have emerged, each with unique characteristics and implications for AI governance.

Principles-Based Approach

This approach offers stakeholders a set of fundamental propositions, or principles, providing guidance for the development and use of AI systems. These principles emphasize ethical, responsible, and human-centric processes that respect human rights. Notable examples include UNESCO’s Recommendations on the Ethics of AI and the OECD’s Recommendation of the Council on Artificial Intelligence.

Standards-Based Approach

In this approach, the state’s regulatory powers are delegated—either totally or partially—to organizations tasked with producing technical standards. These standards guide the interpretation and implementation of mandatory rules. For instance, Recital 121 of the EU’s AI Act highlights the importance of standardization in providing technical solutions for compliance, fostering innovation, and promoting competitiveness.

Agile and Experimentalist Approach

This approach generates flexible regulatory schemes, such as regulatory sandboxes, allowing organizations to test new business models under flexible conditions with oversight from public authorities. The EU’s AI Act exemplifies this by establishing a framework for regulatory sandboxes, enabling real-world testing of innovative AI systems.

Facilitating and Enabling Approach

The goal here is to create an environment that encourages all stakeholders to develop and use responsible, ethical, and human rights-compliant AI systems. UNESCO’s Readiness Assessment Methodology (RAM) aims to help countries gauge their preparedness for ethical AI implementation, pinpointing necessary institutional and regulatory changes.

Adapting Existing Laws Approach

This approach involves amending existing sector-specific and transversal rules to improve the regulatory framework incrementally. For example, Article 22 of the EU’s General Data Protection Regime (GDPR) asserts that individuals have the right not to be subjected to decisions based solely on automated processing, which significantly affects them.

Access to Information Mandates Approach

This approach requires transparency measures that allow public access to basic information about AI systems. Countries such as France have adopted algorithmic transparency obligations for public bodies, mandating the publication of rules defining the main algorithmic processes used in decision-making.

Risk-Based Approach

Regulations in this category establish obligations based on an assessment of the risks tied to specific AI tools in various contexts. An example is Canada’s Directive on Automated Decision-Making, which aims to minimize risks to clients and society while ensuring efficient decision-making aligned with Canadian law.

Rights-Based Approach

This approach focuses on establishing obligations to protect individuals’ rights and freedoms. A proposed human rights-based approach suggests empowering individuals and social groups in African countries to claim their rights while strengthening the capacity of duty-bearers to respect these rights.

Liability Approach

This approach assigns responsibility for problematic uses of AI systems, with specific penalties for non-compliance. The EU’s AI Act outlines penalties for infringements, including administrative fines that can reach up to €35 million or 7% of the total worldwide annual turnover, whichever is higher.

Understanding these diverse regulatory approaches is crucial for stakeholders involved in the development and governance of AI technologies. As the landscape of AI regulation continues to evolve, keeping abreast of these frameworks will be essential for fostering innovation while safeguarding ethical standards and human rights.

More Insights

Revolutionizing Drone Regulations: The EU AI Act Explained

The EU AI Act represents a significant regulatory framework that aims to address the challenges posed by artificial intelligence technologies in various sectors, including the burgeoning field of...

Revolutionizing Drone Regulations: The EU AI Act Explained

The EU AI Act represents a significant regulatory framework that aims to address the challenges posed by artificial intelligence technologies in various sectors, including the burgeoning field of...

Embracing Responsible AI to Mitigate Legal Risks

Businesses must prioritize responsible AI as a frontline defense against legal, financial, and reputational risks, particularly in understanding data lineage. Ignoring these responsibilities could...

AI Governance: Addressing the Shadow IT Challenge

AI tools are rapidly transforming workplace operations, but much of their adoption is happening without proper oversight, leading to the rise of shadow AI as a security concern. Organizations need to...

EU Delays AI Act Implementation to 2027 Amid Industry Pressure

The EU plans to delay the enforcement of high-risk duties in the AI Act until late 2027, allowing companies more time to comply with the regulations. However, this move has drawn criticism from rights...

White House Challenges GAIN AI Act Amid Nvidia Export Controversy

The White House is pushing back against the bipartisan GAIN AI Act, which aims to prioritize U.S. companies in acquiring advanced AI chips. This resistance reflects a strategic decision to maintain...

Experts Warn of EU AI Act’s Impact on Medtech Innovation

Experts at the 2025 European Digital Technology and Software conference expressed concerns that the EU AI Act could hinder the launch of new medtech products in the European market. They emphasized...

Ethical AI: Transforming Compliance into Innovation

Enterprises are racing to innovate with artificial intelligence, often without the proper compliance measures in place. By embedding privacy and ethics into the development lifecycle, organizations...

AI Hiring Compliance Risks Uncovered

Artificial intelligence is reshaping recruitment, with the percentage of HR leaders using generative AI increasing from 19% to 61% between 2023 and 2025. However, this efficiency comes with legal...